10 research outputs found

    Study on Steady-State Responses of High-Speed Vehicle Using Infinite Long Track Model

    No full text
    The coupled vehicle/track dynamic model is formulated through integrating a high-speed rail vehicle model with a slab track model via the wheel/rail contact model. The sliding window method is improved using the least square criterion to simulate the vehicle travelling along the infinite long track. The steady-state responses of a high-speed vehicle induced by the discrete sleepers and slab segments are investigated through numerical simulation and analysis of the experimental results. Also the validity of the coupled vehicle/track model is examined through comparing the simulation results with those acquired from field test measurements. The experimental and numerical results show that the wheel/rail contact forces fluctuate considerably as long as the sleeper passing frequency approaches the frequency of P2 resonance (wheelset and rail bouncing in phase on the slab). Increasing the damping of rail pads and primary suspension can lower the steady-state response amplitudes at the resonance region. The oscillations in the wheel/rail normal forces arising from the discrete slab segment excitation can be reduced by increasing the support stiffness of the CAM (cement asphalt mortar) layer under the slab

    An abnormal carbody swaying of intercity EMU train caused by low wheel–rail equivalent conicity and damping force unloading of yaw damper

    No full text
    Abstract Low-frequency carbody swaying phenomenon often occurs to railway vehicles due to hunting instability, which seriously deteriorates the ride comfort of passengers. This paper investigates low-frequency carbody swaying through experimental analysis and numerical simulation. In the tests, the carbody acceleration, the wheel–rail profiles, and the dynamic characteristics of dampers were measured to understand the characteristics of the abnormal carbody vibration and to find out its primary contributor. Linear and nonlinear numerical simulations on the mechanism and optimization measures were carried out to solve this carbody swaying issue. The results showed that the carbody swaying is the manifest of carbody hunting instability. The low equivalent conicity and the decrease of dynamic damping of the yaw damper are probably the cause of this phenomenon. The optimization measures to increase the equivalent conicity and dynamic damping of the yaw damper were put forward and verified by on-track tests. The results of this study could enrich the knowledge of carbody hunting and provide a reference for solving abnormal carbody vibrations

    Numerical Investigation into the Critical Speed and Frequency of the Hunting Motion in Railway Vehicle System

    No full text
    The critical speed and hunting frequency are two basic research objects of vehicle system dynamics and have a significant influence on the dynamic performance. A lateral dynamic model with 17 degrees of freedom was established in this study to investigate the critical speed and hunting frequency of a high-speed railway vehicle. The nonlinearities of wheel/rail contact geometry, creep forces, and yaw damper were all considered. A heuristic nonlinear creep model was employed to estimate the contact force between the wheel and the rail. The Maxwell model, which covers the influence of the stiffness characteristic, is used to simulate the yaw damper. To reflect the blow-off of the yaw damper, the damping coefficient is described by stages. Based on the mathematical model, the combined effects of vehicle parameters on the critical speed in the straight line and hunting frequency of the wheelset were investigated innovatively. The novel phenomenon that the hunting frequency exhibits a sudden increase from a smaller value to a larger value when the blow-off of the yaw damper occurs was discovered during the calculations. The extents to which various parameters affect the critical speed and hunting frequency are clear on the basis of the numerical results. Moreover, all of the parameter values were divided into three sections to determine the sensitive range for the critical speed and hunting frequency. The results show that the first section of values plays the decisive role on both the critical speed and the hunting frequency for all parameters analyzed. The investigation in this paper enriches the study of hunting stability and gives some ideas to probably solve the abnormal vibrations during the actual operation

    An Investigation into the Modeling Methodology of the Coil Spring

    No full text
    The coil spring is an important element in the suspension system of railway vehicles, and its structural vibration caused by the mass distribution can deteriorate the dynamic performance of the vehicle. However, the coil spring is usually modelled as a simple linear force element without considering the dynamic characteristics in multibody dynamic simulations of railway vehicles. To integrate the dynamic characteristics of the coil spring into the simulation, three equivalent dynamic models of the coil spring are established by treating the coil spring as multimass spring series, Timoshenko beam, and flexible spring, respectively. The frequency-sweep method is applied to obtain the dynamic response of the proposed models of coil spring, and the accuracy of the models’ results has been compared and verified by the laboratory test. Results show that all of these three equivalent models can reflect the influence of the spring mass distribution on its dynamic responses. Compared with the mass-spring series and beam element equivalent models, the flexible spring model can better reflect the dynamic stiffness and stress of the coil spring changing with the exciting frequency. Thus, the flexible spring model proposed in this paper is more applicable to railway vehicle system dynamics and the fatigue analysis

    Mathematical Modelling and Computational Simulation of the Hydraulic Damper during the Orifice-Working Stage for Railway Vehicles

    No full text
    The objective of this paper is to establish an accurate nonlinear mathematical model of the hydraulic damper during the orifice-working stage. A new mathematical model including the submodels of the orifices, hydraulic fluids, pressure chambers, and reservoir chambers is established based on theories of the fluid mechanics, hydropneumatics, and mechanics. Subsequently, a force element based on the established model of the hydraulic damper which contains 56 inputs, 6 force states, and 47 outputs is developed with the FORTRAN language in the secondary development environment of the multibody dynamics software SIMPACK. Using the force element, the damping characteristics of the modified yaw damper with different diameters of the base orifice are calculated under different amplitudes and frequencies of the sine excitation, and then the simulation results are compared with the experimental results which are obtained under the same conditions. Results show that during the orifice-working stage, the new established mathematical model can accurately reproduce the nonlinear static and dynamic characteristics of hydraulic dampers such as the force-displacement characteristic, force-velocity characteristic, fluid shortage, hysteresis effect, and pressure limited effect. Furthermore, it also shows that the nonlinear characteristics of the orifice, air release, cavitation, leakage for high frequencies, and dynamic characteristics of fluid (i.e., the density, bulk modulus, and air/gas content) should be taken seriously during the modelling of the hydraulic damper at the orifice-working stage. The mathematical model proposed in this paper is more applicable to the railway vehicle system dynamics and individual system description of the hydraulic damper

    Motion Control of a 4WS4WD Path-Following Vehicle: Dynamics-Based Steering and Driving Models

    No full text
    This paper deals with a four-wheel-steering four-wheel-driving (4WS4WD) vehicle under the path-following control. Focuses are placed on the motion control of the vehicle, and the drive forces and steering angles for achieving accurate path-following by the vehicle are determined. In this research, a nonlinear vehicle model of three degrees of freedom (DOFs) is used. The vehicle path-following dynamics are modeled using the classical mass-damper-spring vibration theory, which is described by three ordinary differential equations of second order with lateral, heading and velocity deviations, and control parameters. Combined with the vehicle path-following dynamic model, the nonlinear vehicle dynamic model is decoupled in generalized coordinate space. The required drive forces and steering angles for the vehicle path-following controllers are thus calculated and control models are obtained. Theoretical analysis for steering and driving control models is also carried out. It discloses that control models can maintain good performance against uncertainties. The vehicle path-following control is exhibited by dynamic simulation in CarSim with consideration of a complex vehicle model and a variable-curvature planned path. Numerical results obtained are analyzed and show control models have capable of dealing with a complex path-following problem. This paper provides a new insight into understanding path-following control of a 4WS4WD vehicle at the generalized vibration level

    Motion Control of a 4WS4WD Path-Following Vehicle: Further Studies on Steering and Driving Models

    No full text
    Further research on motion control of a 4WS4WD path-following vehicle is carried out in this paper. Focuses are placed on understanding and testing the vehicle path-following control models developed previously at a deep level. Control models are in relation to parameters introduced, and the effects of these parameters are discovered. Control models are interpreted by dynamic simulation using a 3DOF vehicle model with three cases. Three kinds of planned paths are considered in these cases to test control performances, which include the straight, circular, and sinusoidal paths. Interesting dynamic results are obtained and analyzed qualitatively, e.g., various steering modes. Simulation studies are extended with consideration of a fine vehicle dynamic model established in CarSim and a complex path composed of straight and curved segments. Control models are examined in a complex problem, and results obtained show that they are validated with robustness in dynamic environment
    corecore